Global web icon
zhihu.com
https://www.zhihu.com/question/23765351
Softmax 函数的特点和作用是什么? - 知乎
答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流。 softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设 ...
Global web icon
zhihu.com
https://www.zhihu.com/question/485441895
通俗易懂的 Softmax 是怎样的? - 知乎
使用Softmax的原因 讲解了Softmax的函数和使用,那么为什么要使用这个激活函数呢?下面我们来给一个实际的例子来说明:这个图片是狗还是猫? 这种神经网络的常见设计是输出两个实数,一个代表狗,另一个代表猫,并对这些值应用Softmax。例如,假设网络输出 [-1,2] 。
Global web icon
stackoverflow.com
https://stackoverflow.com/questions/17187507/why-u…
Why use softmax as opposed to standard normalization?
I get the reasons for using Cross-Entropy Loss, but how does that relate to the softmax? You said "the softmax function can be seen as trying to minimize the cross-entropy between the predictions and the truth". Suppose, I would use standard / linear normalization, but still use the Cross-Entropy Loss.
Global web icon
zhihu.com
https://www.zhihu.com/question/40403377/answers/up…
多类分类下为什么用softmax而不是用其他归一化方法? - 知乎
根据公式很自然可以想到,各个分类的SoftMax值加在一起是1,也就是100%。 所以,每个分类的SoftMax的值,就是将得分转化为了概率,所有分类的概率加在一起是100%。 这个公式很自然的就解决了从得分映射到概率的问题。 那它又是怎么解决两个得分相近的问题的呢?
Global web icon
stackoverflow.com
https://stackoverflow.com/questions/34968722/how-t…
How to implement the Softmax function in Python? - Stack Overflow
The softmax function is an activation function that turns numbers into probabilities which sum to one. The softmax function outputs a vector that represents the probability distributions of a list of outcomes.
Global web icon
zhihu.com
https://www.zhihu.com/question/358069078
log_softmax与softmax的区别在哪里? - 知乎
如上图,因为softmax会进行指数操作,当上一层的输出,也就是softmax的输入比较大的时候,可能就会产生overflow。 比如上图中,z1、z2、z3取值很大的时候,超出了float能表示的范围。
Global web icon
stackoverflow.com
https://stackoverflow.com/questions/69217305/what-…
what is the difference of torch.nn.Softmax, torch.nn.funtional.softmax ...
Why would you need a log softmax? Well an example lies in the docs of nn.Softmax: This module doesn't work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use LogSoftmax instead (it's faster and has better numerical properties). See also What is the difference between log_softmax and softmax?
Global web icon
stackoverflow.com
https://stackoverflow.com/questions/34240703/what-…
What are logits? What is the difference between softmax and softmax ...
The softmax+logits simply means that the function operates on the unscaled output of earlier layers and that the relative scale to understand the units is linear. It means, in particular, the sum of the inputs may not equal 1, that the values are not probabilities (you might have an input of 5). Internally, it first applies softmax to the unscaled output, and then computes the cross entropy of ...
Global web icon
stackoverflow.com
https://stackoverflow.com/questions/42599498/numer…
python - Numerically stable softmax - Stack Overflow
The softmax exp (x)/sum (exp (x)) is actually numerically well-behaved. It has only positive terms, so we needn't worry about loss of significance, and the denominator is at least as large as the numerator, so the result is guaranteed to fall between 0 and 1. The only accident that might happen is over- or under-flow in the exponentials. Overflow of a single or underflow of all elements of x ...
Global web icon
stackoverflow.com
https://stackoverflow.com/questions/65258468/activ…
Activation functions: Softmax vs Sigmoid - Stack Overflow
Summary of your results: a) CNN with Softmax activation function -> accuracy ~ 0.50, loss ~ 7.60 b) CNN with Sigmoid activation function -> accuracy ~ 0.98, loss ~ 0.06 TLDR Update: Now that I also see you are using only 1 output neuron with Softmax, you will not be able to capture the second class in binary classification. With Softmax you need to define K neurons in the output layer - where ...