About 462,000 results
Open links in new tab
  1. 知乎 - 有问题,就会有答案

    该问题讨论了在Logistic二元回归模型中,逐步回归结果中变量不显著的原因及其可能的解决方法。

  2. What does Logits in machine learning mean? - Data Science Stack …

    Apr 30, 2018 · The unbounded real number (i.e. the unnormalized log-probability) is the logit. Note that, at inference time, in order to know if the probability is greater than 0.5, we don't need to compute the …

  3. 请问Logit 、 tobit模型、Probit模型有什么区别?它们各自适用的条件 …

    模型定义与因变量性质 Logit 模型:是一种用于处理二分类因变量的模型,因变量通常只有两个取值,如 0 和 1。常用于分析个体在两种选择之间的决策行为,比如消费者是否购买某产品、个体是否就业等。 …

  4. logistic regression - What is the purpose of Logit function? At what ...

    Jun 5, 2019 · Here are few queries which are directly related to the purpose of logit function in Logistic regression modeling: Has Logit function (i.e. Logit equation LN (P/1-P)) being derived from Logistic …

  5. 如何理解深度学习源码里经常出现的logits? - 知乎

    logit原本是一个函数,它是sigmoid函数(也叫标准logistic函数) p (x) = 1 1 + e x 的反函数: l o g i t (p) = log (p 1 p) 。 logit这个名字的来源即为 log istic un it。 但在深度学习中,logits就是最终的全连接层 …

  6. SHAP values are explaining the wrong output value

    Mar 26, 2024 · In the latest lgbm version, predict does not output raw scores, instead it outputs probabilities for binary classification task. The above code will work without using logits if …

  7. logistic回归中的OR值怎么解释? - 知乎

    一、OR值定义 logistic回归分析中的OR值代表“比值比”又称 “优势比”。 OR = 1,X与Y之间没有相关性;OR> 1,X可能会促进Y的出现;OR<1,X会阻碍Y的出现。logistic回归分析可以直接输出OR值, …

  8. MinMaxScaler returned values greater than one

    Basically I was looking for a normalization function part of sklearn, which is useful later for logistic regression. Since I have negative values, I chose MinMaxScaler with: feature_range=(0, 1) a...

  9. 模型蒸馏的logits是什么? - 知乎

    量化。量化操作主要是以精度换速度,业界也有尝试在BERT微调阶段进行量化感知训练,使用最小的精度损失将BERT模型参数压缩了4倍。这些量化操作方案很多也是为了将模型移植到移动端进行的优 …

  10. Normal distribution instead of Logistic distribution for classification

    Logistic regression, based on the logistic function $\sigma (x) = \frac {1} {1 + \exp (-x)}$, can be seen as a hypothesis testing problem. Where the reference distribution is the standard Logistic